

Selection and Evaluation of Rice Flours for Gluten-Free Cookies

Gregory VERICEL, Marketing Director

Biscuit People Conference, Croatia, April 2019

March 29, 2019

CHOPIN Technologies

Context and objectives

Gluten-free market

Year	2010	2015	2017	2020
Market (billion \$)	3.5	5 (+43%/2010)	6.6 (+32%/2011)	7.59

- +10%/year until 2025
- 3 groups of people: coeliac + gluten sensitive + healthy lifestyle

Context

- Replacing gluten-containing cereals like wheat: various raw materials available
- Rice advantages: neutral flavor, whiteness, easy to digest, low in sodium, hypoallergenic properties
- Rice flours available on the market are very diverse
 - A direct impact on the quality of the finished products
 - Challenges to develop and validate gluten-free products
- No standards tests available for gluten-free products

Objectives

- Evaluate the impact of rice flour origin on cookies quality
- Determine the rheological properties of different rice flours using Mixolab
- Identify correlations between the properties of finished products and Mixolab rheological behavior.

6 commercial rice flours

+ 1 commercial wheat flour

Reference protocol from LEMPA, Laboratoire National de la Boulangerie Patisserie [®], Rouen.

	Cookie recipe			
Mixing phase 1	Butter	16,4%	159,3 g	
	Sugar	16,4%	159,3 g	
	Salt	0,3%	3,2 g	
Mixing phase 2	Egg	15,4%	150 g	
Mixing phase 3	Flour	51,4%	500 g	
	Yeast	0,2%	1,8 g	
Total weight		100%	973, 5 g	

8

Reference protocol from LEMPA, Laboratoire National de la Boulangerie Patisserie [®], Rouen.

- Mixing
 - Phase 1: 4 minutes at speed 6
 - Phase 2: 4 minutes at speed 5
 - Phase 3: 3 minutes at speed 1
- Relaxation: 1 hour at 4°C
- Lamination
- Cutting: 60 mm pieces
- Blocking: 1 hour at 4°C
- Baking:
 - On perforated plate using ventilated oven
 - Preheating at 220°C, 9 minutes at 170°C

Reference protocol from LEMPA, Laboratoire National de la Boulangerie Patisserie [®], Rouen.

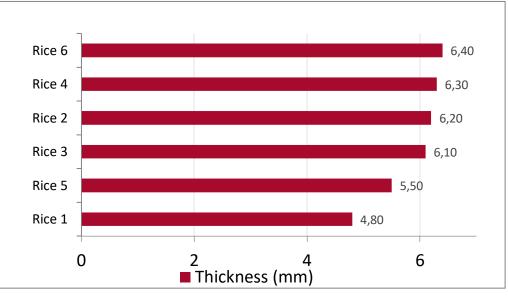
• Laminated dough, sugar crust pastry, at constant hydration

Sugar crust pastry dough

Cookie pieces

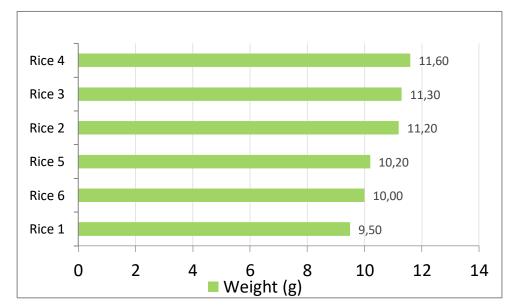
Cookie texture

 Finished products: physical properties (thickness, weight) and sensory tests (texture and taste)


KPM

11

Sample	Rice 6	Rice 1	Rice 2	Rice 3	Rice 4	Rice 5	Wheat
Total score (maximum 300)	245	255	285	280	280	290	280
Pictures							
Comments	lowest total score, darkest color	lightest color (same supplier)		medium color, high total score comparable results (color, texture and total score) with wheat formulation			medium color, high total score



Cookie physical properties

Wheat: 6.20 mm

- Rice 1 cookies : thinnest
- Rice 2, 3 and 4 cookies : high thickness values
- Rice 5 cookies : thin
- Rice 6 cookies : thickest

Wheat: 9.8 g

- Rice 1 cookies : lowest weight
- Rice 2, 3 and 4 cookies : high weight values
- Rice 5 cookies : medium weight
- Rice 6 cookies : medium weight

Cookie baking tests - short recap

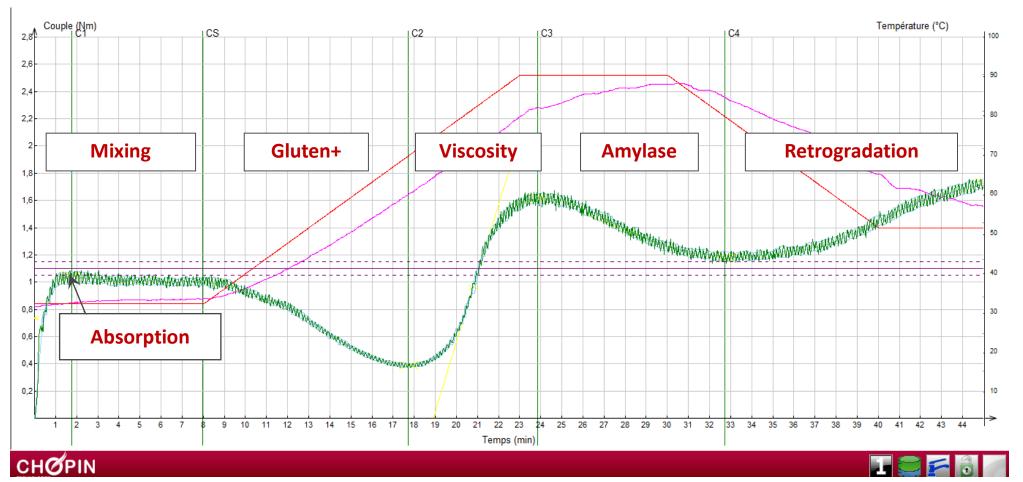
- Sensory tests (taste + texture) :
- \rightarrow 3, 4 and 5 = best candidates

- Physical properties (weight and thickness) :
- \rightarrow 2, 3 and 4 = OK candidates, but higher weights compared to wheat cookies
- Combining sensory + physical results :
 → 3 and 4 = best formulations

Rheological analyses

Mixolab2 – what does it do?

 Recording mixer, with the ability to apply a heating and cooling cycle on a 75-100g dough sample

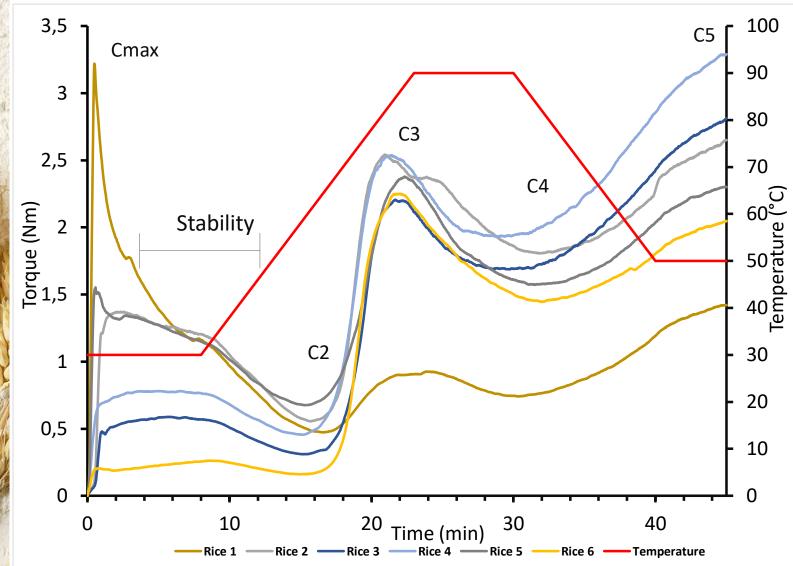

• Evaluates 6 dough quality criteria:

- Water absorption
- Effects of mixing (development and stability)
- Gluten (protein) strength
- Maximum viscosity
- Amylase activity
- Starch retrogradation

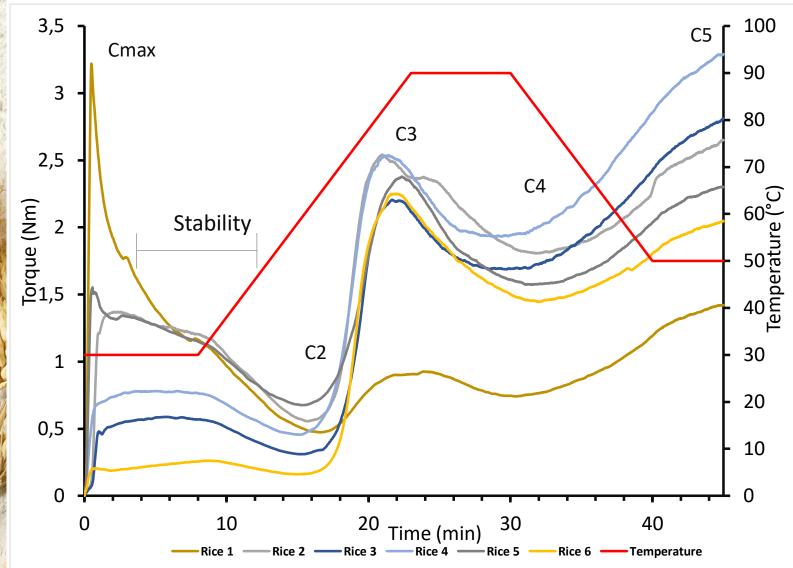
Mixolab2 - Standard results

A specific protocol was developed

- Specific protocol for gluten-free dough
- 90g of dough
- 70% (b14) hydration
- Mixing at 150rpm


March 29, 2019

	Rice protocol
Dough weight	90 g
lydration	70% (b14)
lixing speed	150 rpm
ater tank temperature	30 °C
emperature 1 st step	30 °C
uration 1 st step	8 min
emperature 2 nd step	90 °C
^t temperature gradient	4 °C/min
uration 2 nd step	7 min
nd temperature gradient	- 4 °C /min
emperature 3 rd step	50 °C
ouration 3 rd step	5 min
otal analysis time	45 min


Mixolab rheological properties

- Various rice flours => various Mixolab profiles, able to make different groups
- Rice 1: high cold consistency, lowest consistency during heating (glutinous rice flour)
- Rice 2 and 5: relatively close consistency whatever the mix stage
- Rice 3 and 4: relatively close consistency whatever the mix stage (high fiber content flours)
- Rice 6: lowest cold consistency and relatively high consistency during heating (flour with higher particle size)

Mixolab rheological properties

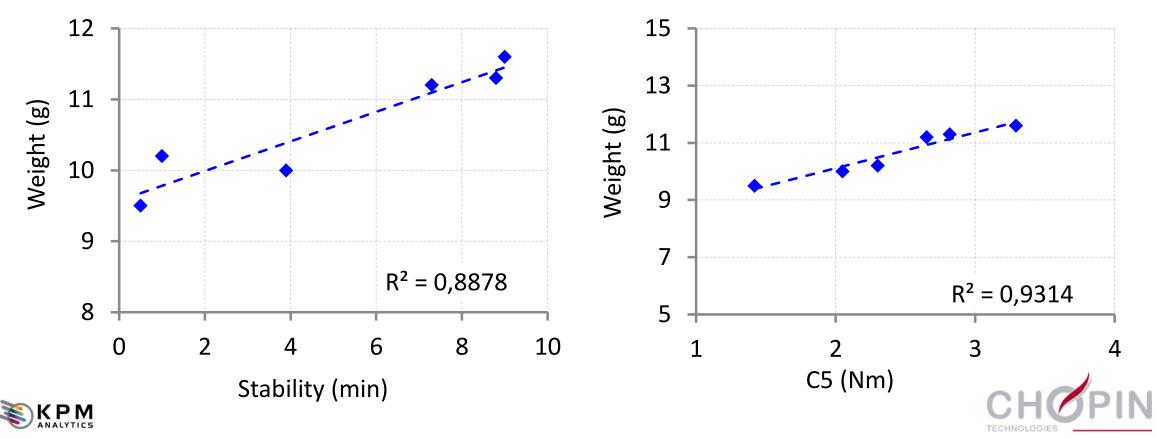
- Rice 1 and 6 :
 - Lowest total score (texture + taste)
 - "Extreme" rheological behaviors
 - => ELIMINATE these formulations

Rice 3 and 4 :

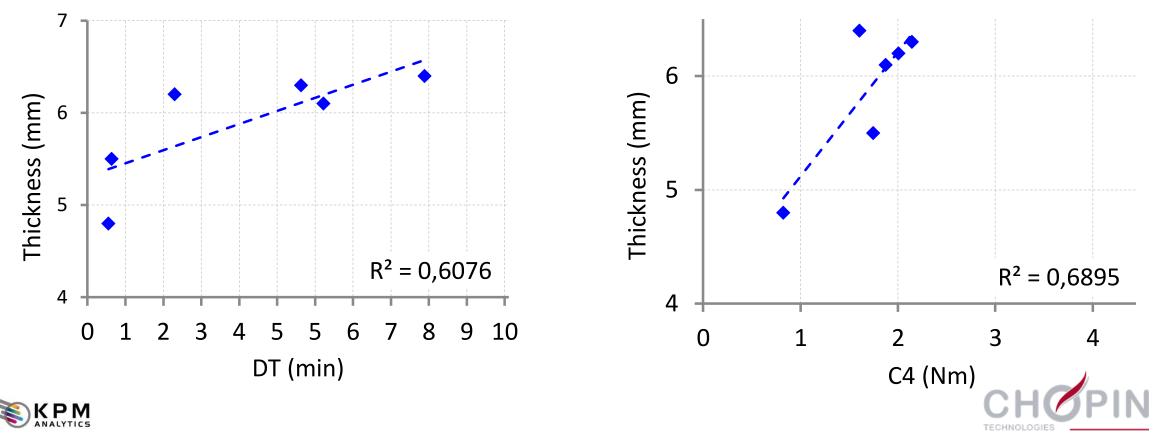
•

- Best candidates (sensory + physical properties)
- Similar rheological behavior
- => TARGET TO REACH
- Based on rheological 45mn tests :
 - Eliminate inadequate formulations
 - Set target
 - Focus on formulations close to target

Correlations


Between rheological data and cookies baking tests results

20


Technological tests vs rheological tests

• **Cookie weight** is highly correlated with Stability and Mixolab C5 (starch retrogradation)

Technological tests vs rheological tests

• **Cookie thickness** is highly correlated with Mixolab C4 (hot gel stability) and Dough development time

What we learnt...

- Cookies made from rice flour showed differences in color and physical properties depending on the origin of flours
- Different rice flours have very different rheological properties (as measured by Mixolab)
- Characteristics of the finished products were highly correlated with Mixolab rheological data
- It is possible to use rheological testing to:
 - Screen raw materials, eliminate the ones inadequate and keep only the promising ones
 - **Predict** final products properties of gluten-free cookies
- Benefits of using rheological testing:
 - Work hand-in-hand with baking tests
 - Speed up NPD process
 - Choose raw materials and ensure their regularity

Acknowledgments

- Pierre-Tristan Fleury, Director, LEMPA
- Arnaud Jacques, Test Baker, LEMPA

- Georges Tawil, PhD, Applications Specialist, CHOPIN Technologies
- Olivier Le Brun, Applications Manager, CHOPIN Technologies
- Arnaud Dubat, Business Development Director, CHOPIN
 Technologies

